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Abstract-An analytic series solution is obtained for the stress and deformation in an isotropic viscous, or 
incompressible elastic layer subjected to rigid-block motion at its base. The block motion approximates slip on a 
pre-existing basement fault of arbitrary dip and sense of slip. Deformation in the layer due to horizontally- 
separating and horizontally-converging blocks, slip on a vertical basement fault, and slip on 45”-dipping reverse 
and normal basement faults is examined. Above horizontally-diverging and -converging blocks, a symmetric 
syncline and anticline form, respectively. Monoclines form above dipping basement faults. The location of the 
monocline, and to a lesser degree its form, vary systematically with fault attitude and sense of slip. For a given 
fault displacement, the region of brittle failure in a basement normal-fault model is larger than that in a reverse- 
fault model. New faults formed in the laver are arcuate in profile. Model results agree with observations of stress , 
orientation and deformation from laboratory models. 

INTRODUCTION 

Mathematical and laboratory models of the deformation 
of a layer due to dip-slip motion on a basement fault, and 
of the upward propagation of the fault, have been 
actively studied since the classic papers of Hafner (1951) 
and Sanford (1959). The results have been applied to 
monoclines above vertical (Reches & Johnson 1978) or 
reverse (Gangi et al., 1977, Rodgers & Rizer 1981) 
faults. 

Models have been formulated in two ways. In most 
models, an overlying layer is deformed in response to 
the relative motion of rigid blocks. Such a model is 
appropriate for a fault which cuts strong basement rock 
below a sequence of weaker sedimentary rock. This 
model is conveniently treated in the laboratory, or 
mathematically. In most experimental models, the base- 
ment is simulated by ‘forcing blocks’ that are effectively 
rigid, relative to the overlying layer. For example, layers 
of clay or sand (Fig. 1) are deformed by the relative 
motion of blocks of steel or wood (e.g. Sandford 1959, 
Lowell 1970, Horsfield 1977, Stearns et al., 1978, Tsu- 
neishi 1978, Withjack et al., 1990), or rock laminates 
(Fig. lb) are deformed above blocks of steel or stronger, 
unlaminated rock (Stearns & Weinberg 1975, Friedman 
et al., 1976a, b, 1980, Weinberg 1979, Patton 1984). 
Horizontal block motion (Figs. la & e) has also been 
used to experimentally model a convergent ‘subduction 
system’ (Malavieille 1984, Malavieille et al., 1993), and a 
divergent ‘listric fault system’ (Cloos 1968). Many of the 
mathematical models, starting with that of Sanford 
(1959), and including that treated here, are also of the 

block-motion type. The velocity, or displacement, 
imposed at the base of the layer is precisely equivalent to 
the relative motion of rigid blocks. 

A second type of model is more appropriate if the 
contrast between the properties of the rock mass cut by 
the fault and the overlying rocks is minimal, or non- 
existent. In the mathematical model of Rodgers & Rizer 
(1981)) a distribution of edge dislocations equivalent to 
slip on a fault, is inserted below the upper surface of a 
uniform elastic half-space. The only experimental model 
of this type known to us is the photoelastic thrust-fault 
model of these authors. 

In this paper, we show that a block-motion model for 
arbitrary fault dip and sense of slip may be constructed 
from appropriate proportions of two end-member 
models; one for a vertical fault, the other for a narrow 
locus of extension or shortening, at which the basement 
blocks separate or ‘interpenetrate’, respectively. The 
normal fault case (Patton 1984) has not been previously 
reported in the literature. 

Although we discuss the models within the context of 
fault-bound basement blocks beneath an unfaulted sec- 
tion of rock, the block-motion boundary conditions are 
applicable to other kinds of tectonic deformation as 
well. For example, separating rigid blocks may be used 
to simulate boudinage structure, where the solutions 
apply to the deformation of material above the boudin 
gaps. The block motion may instead be an interpene- 
tration, corresponding to dissolution along a solution 
seam confined to a stiff layer. 

A brief comparison is made between the embedded 
crack and the block-motion models for the case of an 
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Fig 1. Laboratory models showing deformation associated with 
rigid-block-motion boundary conditions. (a) A horizontal ‘conveyor 
belt’ fault system, modeling a subduction complex beneath sand and 
clay layers (Malavieille 1984). (b) A 60”-dipping reverse, basement 
fault deforming limestone (Ls) and sandstone (Ss) rock beams at 100 
MPa confining pressure (Friedman et al., 1976a). (c) A vertical 
basement fault beneath unconsolidated sand (Stearns ef al., 1978). (d) 
A 60”-dipping normal fault beneath a clay cake (Withjack etal., 1990). 
(e) A horizontal ‘conveyor belt’ extensional fault deforming a clay 

cake (Cloos 1968). 

overlying half-space. We then illustrate the deformation 

of a layer by means of a deformed grid. The stress 
distribution is used to estimate the form of a region of 
failure within the layer, and the orientation of faults 
within it. Lastly, we compare the mathematically- 
derived results with observations from laboratory 
models and natural examples. 

MODEL AND ANALYSIS 

Because of the formal correspondence between solu- 
tions for elastic and viscous bodies, the layer may be 

considered to be either, but the results obtained here 
apply only to an incompressible medium. For an elastic 
layer, the amount of slip on the fault, U, is specified, and 
stress and displacement fields in the layer are obtained. 
The stress in the layer associated with fault slip will scale 
with GUIH, where G is the elastic shear modulus, and H 
is the layer thickness. In the case of a viscous layer, the 
slip rate V is specified, and stress and velocity fields are 
obtained. The stress scales with qV/H, where q is the 
layer viscosity. For definiteness, we keep to the choice of 
the viscous layer. The layer is isotropic. 

The analysis differs only in detail from that given in 
Sanford (1959). The layer is welded to a series of rigid 
blocks of width L/2 (Fig. 2). Blocks are separated by 
faults, all of which dip in the same direction, and the 
sense of slip alternates. Accordingly, the solution ob- 
tained is periodic in the horizontal coordinate x, and 
models alternating normal and reverse faults with the 
same dip, 6. In order for the faults to be effectively 
isolated, L/H >> 1; in the computed results, L/H = 16. A 
motion with length-scale L, corresponding to flow from 
loci of block interpenetration to adjacent loci of block 
separation, will always be present. 

The motion of the fault blocks to either side of a fault 
over one wavelength of the periodic motion is given by 

u(x, 0) = 
-vcos 6 -L/25x50 
+vcos 6 0 5 5 L/2 (la) x 

-L/25x50 

0 I x I L/2 (lb) 

The upper surface of the layer is traction-free. In the 
present solution it is taken to be planar. The boundary 
conditions there are 

%z(X, H) = 0 

dx, HI = 0 (2) 
If appreciable topography were established by the defor- 
mation, it would contribute normal loads at the upper 
surface proportional to the stabilizing density contrast 
there. If the layer is elastic, the relief due to the displace- 
ment at the surface will be negligible for any reasonable 
value of fault displacement. On the other hand, rela- 
tively large relief could be accumulated by deformation 
of a viscous layer. This is not accounted for in the 
solutions obtained, although it would be easy enough to 
do so. Hence, we suppose either that the deformation 
has not progressed to the point where the surface relief 
has become appreciable, or that erosion and deposition 
have maintained a nearly planar upper surface. 

Because the relation between stress and rate of defor- 
mation is linear, the solution for the boundary conditions 
(1) and (2) can be separated into two independent, 
additive parts, one for horizontal relative motion of the 
rigid blocks, and one for vertical motion. Horizontal 
motion corresponds to a fault of zero dip, or to a narrow 
locus of block separation or interpenetration. The 
velocity boundary conditions for the horizontal motion is 
obtained by augmenting condition (la) with 
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Fig. 2. Boundary conditions for the block-motion model. The layer (cross-hatching) extends to infinity in the +x and --x 
directions, and has viscosity r] and thickness H. The upper surface is stress free (au = oXZ = 0) and the lower surface is 
subjected to periodically repeating (at intervals of L/2 where L is the wavelength) faults with constant dip (6) but alternating 
sense of slip. The thickness of the shear zone associated with the fault is ‘t’. Block-motion model results for individual faults 
derive from the mathematical isolation of a segment of the layer (dark, cross-hatching) of length 5L/2. Block-motion 
models presented in this manuscript have isolated the region -L/8 5 x 5 L/8 for analysis and used a layer/thickness ratio 

(L/H) of 16 to minimize the effects of the adjacent faults. 

w(x,O) = 0, -L/2 5 x 5 L/2 (3a) 

and those for the vertical motion by augmenting the 
condition (lb) with 

U(X,O) = 0, -L/25x5 L/2 (3b) 

This decomposition is useful in that we can think of the 
velocity or stress distribution associated with a fault of 
any dip and sense as the additive sum of these two parts. 

The solutions for the layer velocities and stresses for 
each of the component block motions, in turn, are series 
solutions in elementary sinusoidal solutions (Sanford 
1959, Couples 1977, Reches & Johnson 1978). These are 
given in the Appendix. In the numerical evaluation, the 
series are truncated at N terms and, hence, the results 
apply rather to narrow shear zones of width t = L/2N, or, 
since L = 16H, t -L 8HIN. 

In the laboratory models cited in Fig. 1, no provision is 
made for a ‘regional stress’; the deforming media are not 
subjected to a ‘push’ or ‘pull’ at the ends. The stress 
distribution arises solely from the relative motion of the 
underlying blocks or inextensible sheets, and the stress 
dies off away from the locus of interaction of the two 
blocks. Likewise, our block-motion model ignores the 
contribution of regional stress relative to that arising 
from the motions of the blocks. In the mathematical 
model, a regional stress may be introduced, if desired. 
This is allowed, because the rheological behavior 
adopted is a linear one. An explicit picture of the 
addition of regional stress is as follows. Let the layer be 
subject to the regional stress, in which case it will 
contract or stretch horizontally. Now bond the layer to 
the rigid blocks or inextensible sheets, and apply the 
prescribed motions to these. In the present case, we 
have not explored the effects of adding such a regional 
stress, but our supposition is that the stresses arising 
from the relative motion of the basement blocks will 
predominate in many natural cases. Others may use the 
present solution, or a similar one, to explore the alterna- 
tive possibility. 

RESULTS 

Comparison of half-space, block-motion models with 
crack tip models 

It is instructive to compare the two types of models 
described in the introduction for the simpler case of a 
half-space. The velocity and stress distributions for 
purely horizontal block motion are compared with the 
near-tip velocity and stress distributions for a vertical 
mode I crack. Those for purely vertical block motion are 
compared with the near-tip quantities for a vertical 

mode II crack. 
Excluding the absolute magnitudes of quantities, the 

near-tip crack fields are scale-independent, while the 
spatial variation of quantities for the block-motion 
depends on the size of the region relative to the wave- 
length L. Large-scale features become apparent for 
regions with dimension larger than about L/6. To relate 
results for the half-space to those for the layer, in which 
H = L/16, it is useful to scale an appropriate stress 
quantity for the crack and block-motion models so that it 
is equal at the point (0, L/32), above the fault at half the 
thickness of the ‘layer’. 

The velocity field is conveniently illustrated by con- 
tours of the stream function. The velocity vector at any 
point is tangent to a streamline, and its magnitude is 
inversely proportional to the spacing between them. The 
periodic horizontal block motions give rise to circulation 
in the half-space between loci of extension and shorten- 
ing. Over the square with base -L/4 5 x 5 L/4, the 
circulation is evident (Fig. 3a). The near-tip approxi- 
mation for a mode I crack is similar only within a region 
near the locus of extension, as shown by plotting its 
stream function (Fig. 3b), using the same number of 
contours. The magnitude of flow driven by the block 
motion dies off upwards; in the near-tip approximation 
for the crack, the velocity increases away from the tip as 
%‘r, consistent with the %‘(l/r) die-off in stress. The 
streamlines clearly indicate block motion by their strict 
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a) Horizontal block motion 
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(b) Mode I crack 

(d) Mode II crack 

Fig. 3. Comparison of stream functions among infinite half-space block-motion models and mode I and mode II crack 
models. Contours of the stream function for divergent, horizontal block motion (a), in the square region with base -L/4 5 
x 5 L/4. The large-scale flow between loci of block separation is clearly seen; the surfacesx = + L/4 are mirror planes for the 
form of the streamlines, excluding the flow direction. For ‘interpenetration’ or convergence the form of the contours 
remains the same, but the direction of flow reverses. Contours of the stream function for flow near the tip of an opening 
mode 1 crack (b); for better definition, a few more contours are used than in (a). Contours of the stream function for vertical 
block motion (c), in the region -L/4 5 x 5 L/4. Contours of the stream function for a vertical mode I1 crack (d), near-tip 

approximation. The same number of contours is used as in (c). 

parallelism with the block surface near it. The stream- 
lines for the purely vertical block-motion (Fig. 3c) differ 
in several respects from those for the vertical mode II 
crack (Fig. 3d). Again, the block motion at the base is 
evident from the precisely vertical and evenly-spaced 
streamlines there, and the circulation in the block- 
motion is indicated by the horizontal attitudes of stream- 
lines above the fault. The jump in velocity along the 
mode II crack goes to zero at its tip, and increases away 
from the tip. The contrast between rigid blocks and the 
deformable medium below the horizontal plane passing 
through the crack tip is indicated by motion away from 
the crack on the ‘up-thrown’ side, and towards it on the 
‘down-thrown’ side. 

Stream functions for block motions along dipping 
faults may be obtained by adding those for the horizon- 
tal and vertical motions in suitable proportions. Figure 4 
shows the result for a 45” west-dipping normal fault. The 
reverse fault model is distinguished only by a change in 
direction of motion along the streamlines. The crack 

models do not superpose in the same manner; a vertical, 
mixed mode I and II crack is not equivalent to a dipping 
mode II crack. 

In comparing stresses for an horizontal block motion 
with those for avertical, mode I crack, we scale the mean 
stresses for each so that they equal unity at the point (0, 
L/32). The region of observation will be taken as the 
square with side L/8; twice this horizontal span is used in 
the figures of the layer models. The coordinates used on 
these figures are in multiples of the ‘layer thickness’, or 
L/16. An unconventional choice of contours that differ 
by factors of two conveniently shows the dependence on 
distance from the fault tip. Forty-one terms were kept in 
the series expansions for the block-motion quantities. 
Close to the fault, the local behavior is that for a ‘shear 
zone’; the short-wavelength terms have no effect away 
from it. 

For the mean stress, the vertical dependence away 
from the fault in the block-motion model (Fig. 5a) is -l/ 
r; and the fully radial dependence for the crack model 
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Fig. 4. Contours of the stream function in the block-motion model for 
a 45” west-dipping normal fault, obtained by summing the stream 
functions resulting from equal contributions of vertical (Fig. 3a) and 

horizontal (Fig. 3c) block motions. 

(Fig. Sb) is V(llr). The effect of the rigid blocks is to 
cause the mean stress to drop to zero at the block 
surfaces, except in the shear zone. In the maximum 
shear stress distributions for the two models (Figs. 5c- 
d), the block-motion model demonstrates a somewhat 
larger region of higher shear stress around the fault tip. 

In the results for vertical block motion and a vertical 

mode II crack (Fig. 6) the maximum shear stress is used 
to normalize the stress quantities. For the mean stress 
(Figs. 6a-b), the same features discussed in the compari- 
son of the previous pair of models are duplicated here. 
For block motion, the contours of shear stress (Fig. 6c) 
converge towards the fault tip, since the deviatoric stress 
is zero at the block surfaces. As more terms are retained 
in the series, the location of the maximum migrates 
towards the fault tip, and its magnitude increases, with- 
out bound. In contrast, the maximum shear stress for the 
mode II crack (Fig. 6d) does not vanish along the 
horizontal plane corresponding to the base of the layer 
in the block-motion model. 

Overall, this comparison suggests that estimates of 
deformation above a buried fault from block-motion or 
crack models will be similar. 

Layer, block-motion models 

Deformation. A deformed, initially square grid is 
most useful in the comparison between the 
mathematically-modeled deformation and that ob- 
served in laboratory models and natural examples. The 
deformed grid is obtained by computing the velocity at 
each initial grid point, multiplying it by a time incre- 
ment, and advancing the particle to the new position. 

Although the solution is for a flat upper surface, we 
retain the entire deformed grid for clarity. We choose 
the time increment to give a fault displacement equal to 
0.2 the layer thickness. Although we refer to the 
subhorizontal lines as ‘bedding’, we do not imply that 
the layer is anisotropic. We refer to the left- and right- 

hand sides of the models as west and east, respectively. 
Throughout the discussion, we refer to the narrow zone 
between blocks as the location of the ‘basement fault’. 

In horizontal block-convergence, a symmetric, 
upward-widening, anticline forms above the basement 
fault (Fig. 7a). Near the fault, initially square grid 
elements are shortened parallel to bedding. In horizon- 
tal block divergence, grid elements near the fault are 
elongated parallel to bedding, resulting in a symmetric, 
upward-widening syncline in the layer (Fig. 7e). Vertical 
block-motion results in an upward-widening monocline. 
The neutral point of the monocline, at which the vertical 
displacement is zero, is centered above the basement 
fault (Fig. 7~). Grid elements in the upthrown portion of 
the layer show bedding-parallel elongation; those in the 
down-thrown portion show bedding-parallel shortening. 

Summing the velocities for the vertical and horizontal 
block motions in suitable proportions, yields the de- 
formed grids for reverse or normal faults (Figs. 7b & d). 
Slip along a basement normal fault with 4.5” dip gener- 
ates a broad monocline (Fig. 7d). The lower hinge of the 
monocline is complicated by the presence of a low- 
amplitude syncline. With increased dip on the basement 
normal fault, the amplitude of the syncline is reduced 
and its trough migrates west. The neutral point of the 
monocline lies to the east of the basement fault. The 
monocline associated with a basement reverse fault with 
45” dip (Fig. 7b) has an anticline superposed on its upper 
hinge. With increasing fault dip, the amplitude of the 
anticline decreases and its crest migrates towards the 
east, away from the basement-fault location. The neu- 
tral point of the monocline lies to the west of the 
basement fault. 

Stress distribution. The stresses described here are 
those due to the block motion alone, and exclude the 
lithostatic and any ‘regional’ contributions. Horizontal 
block convergence generates a lobe of compressive 
(negative) mean stress above the tip of the basement 
fault (Fig. Sa). The lobe is flanked by two regions of low 
tensile (positive) mean stress. The mean stress decreases 
upward in the layer. Horizontal block divergence pro- 
duces a mean stress distribution (Fig. Se) identical in 
form to that of the convergence model, but everywhere 
of opposite sign. The mean stress distribution for the 
vertical block-motion model (Fig. 8c) has a central line 
of symmetry across which the sign changes. A region of 
large gradient in mean stress above the basement fault 
separates a region of tensile mean stress on the down- 
thrown side of the layer from a region of compressive 
mean stress on the upthrown side. In the upper portion 
of the layer, the positions of regions of tensile and 
compressive mean stress are reversed. 

The value of a stress component for a dipping fault 
model is obtained by adding the values obtained from 
the horizontal and vertical block-motion solutions, in 
suitable proportion. Thus, the mean stress, which is one- 
third the sum of the three normal stress components, is 
also additive. For a basement normal fault with 45” dip 
(Fig. 8d), a region of large tensile mean stress immedi- 
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Fig. 5. Comparison of mean stress and maximum shear stress distributions for the infinite half-space, horizontal 
bl~k-motion model and the vertical, mode I crack model. Contours of mean stress for (a) horizontal bIock-motion 
(separation) in the square region with base -L/16 CC x 5 L/16, or -H 5 x 5 H, where His the ‘layer thickness’ (see text). 
The mean stress is normalized so as to equal unity at the point (0, H/2). Contours of mean stress (b) for the near-tip field of 
an opening, vertical mode I crack, normalized to equal unity at (0, H/2). Contours of maximum shear stress (radius of 
Mohr’s circle) for horizontal, divergent block motion (c). Stress normalization is consistent with that in (a). Contours of 
maximum shear stress (d) for the near-tip field of an opening, vertical mode I crack. Normalization is consistent with that in 
(b). in each diagram, sequential pairs of contours differ by a factor of 2 (-8, -4, -2, -1, -112, - 114, -l/8,0,1/8, 114.112, 

1,2,4,8). Contours are in units of TV/H or GUSH. 

ately overlies the basement-fault, with an adjacent re- 
gion of weaker compressive mean stress at the base of 
the layer to the east. In contrast to the vertical basement- 
fault model, where the large gradient in mean stress 
directly overlies the fault, the large mean-stress gradient 
in this model lies to the east of the basement-fault 
location. The region of tensile mean stress extends 
obliquely across the layer, dominating the eastern half of 
its upper portion. A small region of compressive mean 
stress lies to the west of the center of the layer near its 
upper surface. The form of the contours for the mean- 
stress distribution above a basement reverse fault with 
the same dip and dip direction (Fig. 8b) is identical to 
that for the basement normal fault model, but with a 
change in sign. 

Contours of maximum shear stress Y’J2 = [l/4(0,, - 

cJ,,>’ + oXZ2]“2? for the vertical block-motion model (Fig. 

SC) and the horizontal convergent (Fig. 9a) and diver- 
gent (Fig. 9e) block-motion models, are symmetrically 
distributed about a vertical line above the basement- 
fault location. The maximum shear stress distributions 
for the two horizontal block-motion models are identi- 
cal. A wide region of large shear stress is located above 
the basement fault. Upward, the single region of high 
shear stress separates into two lobes which angle across 
the layer to its upper surface. The shear-stress gradient 
above the basement-fault location is large, resulting in 
low shear stress in the central portion of the layer. For 
the vertical block-motion model, high values of maxi- 
mum shear stress are present in the central portion of the 
layer, above the basement-fault location. At the base of 
the layer, the region of high shear stress is narrow, with 
large gradients adjacent to the basement-fault location. 
In both the horizontal and vertical block-motion 
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(d) 
Fig. 6. Comparison of mean stress and maximum shear stress distributions for the infinite half-space, vertical block-motion 
model and the vertical, mode II crack model. Contours of mean stress (a) for vertical block motion. Above the upthrown 
block, the mean stress is negative (compressive). Contours of mean stress (b) for the near-tip field of a vertical, mode II 
crack. Contours of maximum shear stress (c) for vertical block-motion. Contours of maximum shear stress(d) for the near- 
tip field of a vertical mode II crack. Contours of both mean stress and maximum shear stress are normalized relative to the 

maximum shear stress equaling unity at the point (0, H/2). Contours are in units of vV/H or GUIH. 

models, the central, upper portion of the layer has lower 
shear stress values, flanked by slightly higher shear 
stress to the east and west. 

To obtain maximum shear stress distributions for 
dipping basement-fault models, we must first calculate 
the individual stress components for the vertical and 
horizontal solutions, add them in suitable proportions, 
and then form the quantity v’J~. The basement normal- 
fault model (Fig. 9d) shows a lobe of high shear stress 
extending from the basement fault obliquely across the 
layer to its upper surface. The hint of a second lobe, 
similar to that seen in the horizontal block-motion 
models, lies to the west of the fault location. A signifi- 
cantly wider region of high shear stress is present at the 
base than in the case of the vertical block-motion model. 
The maximum shear-stress distribution for the basement 
reverse fault (Fig. 9b) is identical to that of the normal 
fault when viewed such that both faults have the same 
dip direction. 

Maximum compressive stress orientation is generally 
horizontal to moderately inclined for the horizontal, 

convergent block-motion model (Fig. 10a) and moder- 
ately inclined to vertical for the horizontal, divergent 
block-motion model (Fig. 10e). For the vertical block- 
motion model (Fig. lOc), maximum compressive stress 
orientation in the eastern half of the layer is similar to 
that of the horizontal divergent block-motion model, 
and that in the western half of the layer is similar to that 
of the horizontal convergent block-motion model. For 
the basement normal-fault model (Fig. lOd), the maxi- 
mum principal stress orientation is similar to that for the 
horizontal, divergent block-motion model in regions 
away from the basement fault location. The orientation 
in the region above the basement fault is similar to that 
above the fault in the vertical block-motion model. 
Along the upper portion of the layer, the maximum 
compressive stress is horizontal in a limited area im- 
mediately to the west of the basement fault. It is vertical 
in adjacent regions. The orientation of the maximum 
compressive stress in the basement reverse-fault model 
(Fig. 10a) is similar to that in the horizontal, convergent 
block-motion model in regions away from the fault, and 
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(b) 
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(e) 
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Fig. 7. Deformation of initially equant grids associated with layer, block-motion models for a: (a) convergent, horizontal 
fault; (b) reverse fault with 45” dip; (c) vertical fault; (d) normal fault with 45” dip; and (e) divergent, horizontal fault. The 
velocity, and the resulting flow portrayed by the deformed grid. has been exaggerated to allow comparison among models. 
The horizontal dashed lines represent the original, undeformed layer position and thickness. ‘C’ identifies the crest of a 
hanging wall anticline; ‘T’ identifies the trough of a hanging wall syncline. Neutral points (loci of no apparent vertical 

motion) at the upper surface of the layer are identified with solid dots. 

similar to that in the vertical block-motion model in the models for reverse faults (e.g. Gangi ef al., 1977, 
region above the tip of the basement fault. Again, the Rodgers & Rizer 1981) and vertical faults (e.g. Sanford 
maximum compressive stress orientation near the upper 1959, Haneberg 1992, 1993) that use similar boundary 
surface of the layer is vertical within a limited region conditions. 
lying immediately to the east of the basement fault, and 
horizontal in adjacent regions. Brittle failure. One goal of modeling is the mechanical 

The stress distributions obtained in these models are rationalization of observed natural or experimental dis- 
closely similar to those obtained from mathematical continuous structures, which form predominantly by 
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Fig. 8. Contours of dimensionless mean stress associated with the layer, block-motion models of a: (a) convergent, 
horizontal fault; (b) reverse fault with 45” dip; (c) vertical fault; (d) normal fault with 45” dip; and (e) divergent, horizontal 
fault. Compression is negative and tension is positive. Contours >l and c-1 increase by a factor of 2 for each subsequent 
contour (e.g. 1,2,4,8). Contours between -1 and 1, have acontourintervalof0.1. Contoursareinunitsofr]V/Hor GVIH. 

brittle behavior: micro-cracking, crystal-plastic defor- 
mation, jointing, faulting, and the propagation of the 
underlying fault zone. 

It has been customary to use stress distributions, such 
as those obtained here, to make estimates of the distri- 
bution, nature, and evolution of brittle deformation 
(Hafner 1951, Sanford 1959, Howard 1966, Couples 
1978). This procedure is not rigorous, beyond determin- 
ing the first point of failure, since, once failure begins, 
the body no longer behaves as an elastic or viscous body, 
or as the same elastic or viscous body. For example, a 
fault can be treated as a discrete cut on which certain 

conditions are met, but the stress distribution in the new, 
faulted body is no longer that in the unfaulted body. The 
rough agreement between results obtained this way and 
observations from experimentally or naturally deformed 
structures, however, supports the use of the method as a 
convenient first approximation. 

The model stress distribution may be used to infer the 
onset, distribution and nature of brittle failure, by fault- 
ing, in the layer. The procedure used is that of Kilsdonk 
& Fletcher (1989), with a modification to include the 
effect of lithostatic stress. 

The dimensionless failure criterion,f* = 0, is given by 
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(d) 

Fig. 9. Contours of dimensionless deviatoric stress (d&) associated with the layer block-motion models of a: (a) 
convergent, horizontal fault; (b) reverse fault with 45” dip; (c) vertical fault; (d) normal fault with 45” dip; and (e) divergent, 
horizontal fault. Contours >l and <-1 increase by a factor of 2 for each subsequent contour (e.g. 1,2,4, 8). Contours 

between -1 and 1, have a contour interval of 0.1. Contours are in units of vV/H or GUIH. 

f* = r* - t,* + sin #[a* + a(z/H - l)] = 0 (4) 

where r* = r/[2qV/H] is a dimensionless maximum 
shear stress, and o* = u/[27VIH] is a dimensionless 
mean stress, and 

r,* = r,E_II(2?7V) 

a = pgH2/(2qV) 

where t, is the cohesion. 

@a) 

(5b) 

By adopting as the basic rheological behavior that of a 
viscous fluid, we have opted for creeping flow as the 
dominant response of the layer. Most other modelers of 

deformation above basement faults (e.g. Sanford 1959, 
Rodgers & Rizer 1980) adopt elastic behavior. The only 
real significance of our choice is that the material be 
restricted to be incompressible. We can switch the 
behavior of the layer from viscous fluid to elastic solid at 
will, by replacing the product T,JV by CU. Hence, in 
evaluating the dimensionless constants above, the 
reader may choose either. For example, the choice G = 
104MPa, U = lm yields a value of the product GU = 
101’kg/s2, as does likewise the product 11 = x X 1019 Pa, 
s and V = 1 cm/u = z x 10-‘Om/s. Using p = 2500 kg/m3, 
g = 10 m/s2, H = 3 km, and r, = lOMPa, we obtain, in 



Model for deformation of a layer above a buried fault 

~---- ------------- ~-~+i-C+,-~+~-~+,-t+,-~+,-~, 
L------------------x\\\ \\lllllll/lll ll/lI 
+ ----------~----~~\\\\\\\Il/ll1l/l/1//ll) 
.4--~~~,,./....- ---~~\\\\\\\/1//1///1/11111 
j-HM//M/////./d- --~~\\\\\\\11//,,,,//////~ 
l-.,,,,,,,,O/O/ ---~~\\\\\111/,///////////) 
I/////////////~ ---~\\\\\1l///,/,,,,,////~ 
L/////,////,,/, ---~\\\\11//,//0/////////~ 
~/////,//,///,/~--- \\\I II/,//////~///,//j 
~/////,/////lll/~~--\\111/---,,/////////, 
I-A c ,-A c 4-A J 4-A x A-L- x A-L x A-k- x 4-L ‘4 A-L k A-L- x -/-R-L x4- 4 4-b. 4 4) 

(c) dr 
b __I__,_ _t_,__+_+_,__,__~_,__~_ _____ _____ l_-,._ \__t_,__,_+_,__~_+ _,_.,._ t .,__ &,__,_+_+_, 
\l\l\llll////~~~ --~\\\\\\\11/111//11//111 
~\~i~~~~f~///~~~~~~~~~~~~~lillillll/lllli 
~\\\\\\lllll/l//l\~~\\\\\\ltlllllllli/il~ 
\\\\\\\\11///11/1\~~\\\\\\11/11/1/1//1111 
j\\\\\\\lllllll/l\\~\\\\\ll/////,,/,//,/~ 
~\\\\\\\\l\l\\lfl\~\~\\\lll11///,,,,,,,,~ 
i\\\\\\\\\\\\\l\Il~\\\\llli/,,,,,,,,,,,,~ 
c\\\\\\\\\\\\\\\\\\~\\111/1////,,,,,,,,,,//~ 
j\\\\\\\\\\\\\\\\\\\\\II//////,,/,,/////,~ 
Y__~_f_,-t-~_,.~_~_,_~-~-,-~-~-,.~-~-,-~ -,--,-- /-f -,-- /-f-,-f.~.,-~.~-,-~-~.,.~ .,..,- * 

(d) H 
~-+_,--~-+_+__~_+_,._~_ ,__,_. 1 ._I_. +_+ _,__ \_+ _,_-_ I_,_- ,-_I .,..,__ b _,__ \ __I-_,__ I-+ -1.. 1 _,__f_ +__I__, 
\IIIlll\lllllltl////l\\\\\lllltlllrtlllll 
~\\\\\ll\l\llll/////l\\\\\llllllllll//l/i 
\\\\\\\\\\11111/////\1\\\\l111//1///////1 
~\\\\\\\\\\l\IIf////I\\\\I\IIl/lll//////~ 
J\\\\\\\\\\\IIII////\\\\\IIII///////////i 
~\\\\\\\\\\\\\llll//l\\\\llll/////~ 
~\\\\\\\\\\\\\\\lll/l\\lllll///~////////~ 
~\\\\\\\\\\\\\\\\\l/l\ll////////////////~ 
X\\\\\\\\\\\\\\\\\\IIII/////////////////L 
~__,-+_~-.,-+ _,__,_ + _,..,. f_\._~_~_,_+_~ _,__ k __I__,_ 4.6.,.f./-_/_#_/_~.+_/ -.,_ + _,__ H-4_,_J_> 

@I 
7-T I 

Fig. 10. Maximum compressive stress trajectories associated with layer, block-motion models of a: (a) convergent, 
horizontal fault; (b) reverse fault with 45” dip; (c) vertical fault; (d) normal fault with 45” dip; and (e) divergent, horizontal 
fault. Positive isotropic points in the upper portion of the layer are indicated by converging stress trajectories immediately to 

the east and west of the center of the layer for the reverse- (b) and normal-fault (d) models respectively. 
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either case, rz = 1.5 and a = 11.25. The value of Q is 
rather large, indicating the dominance of the lithostatic 
stress relative to the stresses arising from fault motion, 
except in the immediate vicinity of the fault. Thus, we 
may anticipate that, for this choice of parameters, the 
locus f* = 0 will enclose only a small region near the 
fault, external to which the stresses will fall below the 
yield condition, f * ~0. An increase in the product qVor 
GU by a factor of 10 to 100 leads to more interesting 
‘regions of failure’. 

Notice that, for fixed values of r, and pgH, the two 
dimensionless groups r,* and a will maintain the same 
ratio as the product varies. This suggests the following 
scheme, which is more readily associated with an elastic 
layer. Let all physical parameters be fixed with the 
values cited above, yielding a zpa ratio of 0.13. Then, as 
U is increased, the parameters will fall, and, at some 
point, initial failure will occur. In the present case, initial 
failure will always occur at the fault zone, provided that 
it is sharp enough. We may then increase the fault 
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displacement, U, beyond the point of initial failure, and 
use the evolving position of the locus f* = 0 to estimate 
the growing region of failure, until, for example, it 
finally crosses the entire layer. This procedure clearly 
pushes at the limits of the approximation, but the result 
is appealing. If one adopts, instead, viscous behavior, 
the region of failure is an estimate of the region in which 
faulting takes place in addition to deformation by mech- 
anisms such as pressure solutuion. 

The procedure is carried out for each block-motion 
model using 111 terms in the series expansions, so, for 
the above choice of physical parameters, the width of the 
fault zone is roughly SHllll, or, for H = 3 km, 216 m. 
For each block-motion model, the sequence of initial 
failure (f* = 0) loci, corresponding to increments in 
displacement of 1 meter on the fault, are drawn (Fig. 
11). The displacement on the fault is increased until the 
loci of failure join to cross the entire layer. 

For the horizontal convergent (Fig. lla) and diver- 
gent (Fig. lle) block-motion models, the regions of 
failure are symmetric and ‘conjugate’, leaving an 
unfailed block between them. The region of failure 
crosses the entire layer at U = 10 m in the convergent 
model, twice that for the divergent model. The overall 
orientations of the regions of failure near the basement 
fdUlt are horizontal, but become steeply inclined higher 
in the layer with additional fault displacement. For the 
vertical fault (Fig. llc), a single throughgoing, asym- 
metric zone of failure is established at U = 5m. The 
orientation of the region of failure for smaller basement- 
fault displacement remains nearly vertical throughout 
much of the layer. For basement-fault displacement less 
than that for which the failure region crosses the layer. 
all three models show regions of failure near the upper 
surface of the layer which are isolated from that above 
the basement fault. 

In the basement reverse-fault model (Fig. lib), the 
initial region of failure at the base of the layer is 
elongated in a direction roughly parallel to the dip of the 
basement fault. A separate shallow region of failure 
occurs at the upper surface, to the east of the basement 
fault. With larger basement-fault displacement, two 
distinct, vertically elongated lobes of failure form to the 
west and east of the basement-fault location. The one on 
the east links with the failure region near the upper 
surface at U = 6 m. 

The shape of the failure region above the basement 
normal fault (Fig. lid) is more symmetric than that of 
the basement reverse fault. Through-going failure of the 
layer occurs at a smaller basement-fault displacement (4 
m) for this model than for any of the other basement- 
fault models. 

As in other mathematical models addressing brittle 
failure, we have assumed that at every point within the 
region of failure, two fault orientations (‘X’ in Fig. 11) 
are possible at an angle of 30” to either side of the 
maximum compressive stress. By this relationship, our 
models describe arcuate rather than planar fault pro- 
files. The overall orientation of the faults within the 
failure region for basement-fault models with a conver- 

gent block-motion component (Figs. lla-b) are roughly 
horizontal and terminate against the edges of regions of 
failure without propagating vertically very far into the 
layer. In contrast, in basement-fault models with a 
component of divergent block-motion, faults in the layer 
are more nearly vertically oriented and may propagate 
to significant vertical distances within the layer prior to 
intersecting the edge of the failure region. This suggests 
that for constant basement-fault displacement, not only 
will the region of failure be larger above normal faults 
than for reverse faults, but also faults associated with 
basement normal faults will be more efficient in propa- 
gating to the upper surface of the layer than will faults 
propagating above basement reverse faults. 

DISCUSSION 

The applicability of the results obtained from the 
present model to natural structures can be checked, in 
part, by comparing them with results obtained from 
laboratory models, such as those using rigid forcing 
blocks, that conform to the boundary conditions 
adopted in the mathematical models. Differences are to 
be expected, because the mathematical models only 
approximate the rheologicai behavior and boundary 
conditions of the experimental models, or those apply- 
ing to natural structures. However, the comparison 
provides a guide to the sensitivity of modeled and 
natural features to those conditions. Application of 
results from either kind of model to natural structures 
will still depend on whether the model conditions con- 
form to those in nature. 

Deformation of the layer 

The deformation of the layer in our models compares 
well with that observed in laboratory model studies (Fig. 
1) despite significant differences between the rheologi- 
cal behavior of the materials. Malavieille (1984) gener- 
ated one-sided, horizontal convergence at the base of a 
sand layer using a conveyor-like assembly in which the 
‘rigid block’ carrying the sand is subducted beneath a 
second, stationary rigid block (Fig. la). The upward- 
widening anticline, centered above the point of conver- 
gence between the translating and fixed ‘blocks’ is equiv- 
alent to that produced in the present model (Fig. 7a). 
Similarly, one-sided horizontal divergence at the base of 
a clay layer (Cloos 1968) generates an upward-widening 
syncline, centered above the point of divergence (Fig. 
le) like that in the present model (Fig. 7e). 

As noted in the Introduction, the set of basal bound- 
ary conditions (la) and (3a), for purely horizontal block 
motion, are nearly identical to those imposed in the 
experiments of Cloos (1968) and Malavieille et al. 
(1993), both of which are meant to apply to situations 
involving an horizontal decollement, or detachment 
surface. In view of the importance of such experiments 
in current thinking in structural geology, we offer the 
following detailed comments. 
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(c) 

Fig. 11. Regions of potential failure associated with the layer, block-motion models of a: (a) convergent, horizontal fault; 
(b) reverse fault with 45” dip; (c) vertical fault; (d) normal fault with 45” dip; and (e) divergent, horizontal fault. Contours 
connect loci of failure for a given fault displacement (v) and the associated contour values correspond to the magnitude of 
the fault displacement. The highest contour in each diagram represents the basement-fault displacement necessary for loci 
of failure to cross the entire layer. Note that 10m of basement-fault displacement are required to accomplish complete 
failure of the layer in model (a), while only 5m of fault displacement are required in (e). Conjugate fault trajectories are 
indicated by ‘X’. The acute angle of the ‘x’ is bisected by the principal compressive stress. The fault in the clockwise 
direction from the bisector has a left-lateral sense of slip while the fault in the counter-clockwise direction has a right-lateral 

sense of slip. 

In one of his experiments, Cloos (1968) produced a adhered-for the most part-to the metal sheet underly- 
structure in clay cake analogous to that seen above a ing it, and, after some preliminary deformation, a nor- 
listric normal fault by pulling on an inextensible metal ma1 fault formed between the edge of the upper, fixed, 
sheet from beneath another, normal to the straight edge sheet and the surface of the layer. Indeed, ‘nearly 
of the latter. Both sheets were supported by an horizon- identical’ may not be accepted by some readers as an 
tal surface, so that their relative motion was horizontal, accurate statement. One difference, perhaps not easily 
and, hence, satisfied (3a). At its base, the clay cake controlled by the experimentalist, has to do with the 
15 1,:10-w 
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deviation from perfect adherence between the clay cake, 
at its base, to one or the other metal sheet. It is clear that 
as one plate is pulled, new surface area will emerge from 
beneath the fixed plate, and that to this, the clay, at the 
base of the hanging wall along the newly-formed fault, 
will come to adhere to a greater or lesser extent. 

The second difference, to which we attach the greater 
significance, can be stated in precise mathematical 
terms. To clearly present this, we shall describe a modi- 
fied experimental set-up. Suppose the metal sheets used 
by Cloos are replaced by two inextensible, but flexible, 
sheets, composed, for example, of Mylar. Let the sheets 
be supported by a horizontal table. Instead of having the 
two sheets overlap, let them both be effectively 
unbounded, and both feed into a straight slot in the 
table. Then, either sheet may be independently pulled 
horizontally, from beyond the edges of the overlying 
clay cake, or, if desired, held fixed by being suitably 
clamped at both ends. The Cloos experiment corre- 
sponds to the case that one sheet is pulled, and the other 
is held fixed. The boundary condition (la), with 6=0, 
and DO, corresponds to the case that both sheets are 
pulled with the same speed. The boundary condition 
corresponding to the Cloos experiment is achieved by 
replacing (la) by 

U(X, 0) = 
-Vcos6 - vcoso -L/2~XXO 

+Vcos6 - Vcos6 OsxiLl2 (6) 

In this case, the velocity at the base of the material to the 
right of the origin, x = 0, is zero. The speed of the sheet 
on the left of the origin is twice that in the previous case, 
but the relative motion, between sheets, is the same. 

Cloos (1968) also performed an experiment which 
initially corresponded to the boundary condition (la). 
Interestingly, he did this by resting a clay cake on two 
boards, i.e. rigid blocks, in contact, and pulling them 
apart. Because the part of the clay cake between the 
separating boards becomes unsupported, or, if one used 
sheets of metal initially in contact, but resting on a table, 
part of the clay cake does not adhere to a moving plate, 
the experiment does not continue to correspond to the 
condition (la). The alternate experiment described will, 
provided the clay continues to adhere to the new surface 
area of the sheets. 

Now, if the material comprising the clay cake main- 
tained its initial, uniform, properties throughout the 
experiment-which it does not, since a well-defined 
fault surface develops, if a condition of adherence were 
strictly satisfied, and if the layer thickness were main- 
tained constant, by the addition of new material to the 
region in which thinning is occurring, then the following 
would be true. The distribution of stress and of the rate 
of deformation would be identical in the two 
experiments-that in which one sheet alone were 
pulled, and that in which both sheets were pulled at 
equal speeds. The velocity field would differ only in 
terms of a uniform translation to the left, in the first 
experiment, as we have described it. As a consequence 
of the last, the distribution of strain and the form of 

deformed marker horizons would be different: these 
would be asymmetric in the first experiment, and sym- 
metric in the second. 

In the case of the present model, the clay cake is 
replaced by a Newtonian viscous layer, and what has 
been just said applies in detail. We have, in fact, worked 
up the equivalents of the two experiments for a large 
finite deformation. Evidently, no faults nor fault-like 
features can occur in the fluid layer, so the results are 
different in this respect from the Cloos experiment. Such 
results could be readily duplicated by means of the 
methodology presented in this paper. 

Returning to the description of the experiments in 
terms of the pulling or fixing of Mylar sheets, if one, or 
both of the sheets are pulled into the slot, analogous, 
compressional structures will be produced. We would 
identify these types of structures with the models of 
Malavieille (1984) and Malavieille et al. (1993), and 
others. 

With regard to the application of these models to 
structures formed above detachment surfaces, we may 
make the following remarks. Mylar sheets, metal plates, 
or inextensible sheets of any sort are not present at 
detachment surfaces in nature. The experimental 
models impose a boundary condition-that on the uni- 
formity of the detachment-parallel velocity, that is not a 
natural condition to impose at a detachment surface. A 
natural condition might, for example, relate the slip rate 
on the detachment surface to the normal and shear 
tractions. In the case of material possessing finite 
strength, as in the case of a clay cake, the velocity field 
arising in a natural or experimental deformation may 
possess the property stipulated in these models. In the 
case of fluid-like behavior, they will not. 

Rock-laminate experiments modeling reverse (Figs. 
lb and 12a), vertical (Fig. 12b) and normal basement- 
fault (Fig. 12~) motions, show upward-widening mono- 
clines. The location of the limb of the monocline, rela- 
tive to the location of the basement fault, is dependent 
upon the basement-fault dip and sense of slip. For a 
reverse basement fault, the limb lies to the west of the 
fault tip. For vertical and normal basement-fault 
models, the limb lies directly above and to the east of the 
basement fault, respectively. In a series of experiments 
in mixed sand and clay modeling dipping basement 
faults (Tsuneishi 1978), the same relationship between 
the location of the ‘flexure zone’ and the attitude and 
sense of slip of the basement fault is observed. 

The low-amplitude anticline and syncline superposed 
on a monocline which appears in the block-motion 
model (Figs. 7b & d), is observed when a clay layer is 
deformed above a basement fault. Withjack et al. (1990) 
show a subtle syncline on the downthrown limb of a 
monocline generated above a basement normal fault, 
with 45” dip. A syncline is not seen in experiments with 
60” and 75” basement normal faults. Similarly, our 
block-motion model of a basement normal fault with dip 
in excess of 45” shows reduced expression of the syncline 
as the basement-fault angle approaches 90”. Rodgers & 
Rizer (1981) show an experimental model of a clay-cake 
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(a) 0' 10mm W 

Fig. 12. Faults (heavy lines) and inferred, maximum-compressive stress trajectories (dashed lines) in multilayer experi- 
ments, with limestone (Ls) and sandstone (Ss) rock-beams. The experiments were run at 100 MPa confining pressure and 
include, (a) a reverse basement fault dipping 60” (Friedman et al., 1976a), (b) a vertical basement fault (Logan et al., 1978), 

and (c) a normal basement fault dipping 70” (Patton 1984). 

deformed above a basement reverse fault. An internal 
marker and the upper surface of the clay-cake takes the 
form of a low-relief anticline superposed on the upper 
limb of the monocline, in agreement with the block- 
motion model. 

The spatial and geometric dependence of monoclines 
on basement-fault dip and sense of slip, documented in 
both experimental and mathematical modeling studies, 
may permit estimates of the position of a buried fault 
beneath a monocline, and its dip and sense of slip. Brock 
& Nicolaysen (1975, Fig. 8) have interpreted the Brady 
Unit monocline in the Wyoming foreland to be under- 
lain by a vertical basement fault. However, the position 
of the monoclinal limb relative to the location of the 
basement fault would argue for a basement reverse-fault 
interpretation. However, as demonstrated by Reches 
(1978) and Reches & Johnson (1978), such monocline- 
fault relationships can be very sensitive to the stratigra- 
phy of the monocline and the boundary conditions, 
making unequivocal interpretations difficult. 

Stress state of the layer 

Information on the stress distribution in experimental 
and natural structures is difficult to obtain. Experiments 
which allow for the extraction of stress-state information 
are photoelastic models (e.g. Rodgers & Rizer 1981, 
Wiltschko & Eastman 1988) and structures generated 
with rock laminates above rigid blocks. 

Good agreement is obtained between the orientation 
of maximum compressive stress derived from the math- 
ematical block-motion models and that inferred from 
calcite twin lamellae and microcracks in constituent 
grains of small-displacement rock models (Fig. 12) for 
reverse- (Friedman et al., 1976a, Gangi et al., 1977), 
vertical- (Logan et al., 1978) and normal-fault (Patton 
1984) block-motion. In the region vertically above the 
fault, both mathematical (Figs. lob-d) and experimen- 
tal (Fig. 12) models show compressive stress trajectories 
that are arcuate and concave towards the downthrown 
side of the basement fault. Arcuate stress trajectories 
are present well into the upper reaches of the rock 
layers, west of the induced fault system in the rock 
layers, where they have attitudes which are nearly hori- 
zontal for reverse basement-fault models (Fig. 12a), and 

inclined at 45” for vertical and normal basement-fault 
rock models (Figs. 12b-c), as in the mathematical block- 
motion models (Fig. 10). Both experimental and math- 
ematical models have nearly horizontal trajectories im- 
mediately to the west of the basement-fault location at 
the base of the layer. The reverse basement-fault model 
shows the most areally extensive expression of horizon- 
tal trajectories, and the normal-fault model shows the 
least. The vertical stress trajectories to the west of the 
vertical fault (Fig. 12b), and to the east and west of the 
reverse fault (Fig. 12a), in the rock models are at 90” to 
those found in the mathematical models (Figs. lob-c). 
This inconsistency most likely reflects an aspect of the 
experimental conditions not accounted for in the bound- 
ary conditions of our models. However, the mathemat- 
ical models suggest that the maximum shear stress is low 
in these regions (Figs. 9b-d) and its effects would not 
likely be seen in the rock models. Furthermore, the 
basement faults at the base of the rock models in Fig. 12 
have experienced significant displacement relative to the 
dimensions of the layers, and the layers are composed of 
rock laminates. Ideally, stress-state comparisons be- 
tween our model and experimental block-motion 
models need to be made with single-layer, isotropic rock 
layers deformed at small displacements. 

Reches (1978) analyzed paleostress indicators across 
the Palisades monocline in Arizona. The monocline is a 
gentle fold above a subvertical basement fault. Reches 
(1978) documented layer-parallel, maximum compres- 
sive stress orientations on both the upthrown and 
downthrown sides of the fault. This contrasts with the 
arcuate trajectory patterns in the vertical, block-motion 
model (e.g. Fig. lOc), which record the transition from 
vertical maximum compressive stress orientations on the 
upthrown side of the basement fault to horizontal orien- 
tations on the downthrown side. However, Reches 
(1978) found that the compressive stress state docu- 
mented in profile was related to a regional, subhorizon- 
tal compression which was present during the time of 
monocline development. 

The Casper Mountain structure in the Wyoming Fore- 
land is a monocline above a basement reverse fault (Narr 
& Suppe 1989). In their study of paleostress orientations 
of cover rocks at Casper Mountain, Narr & Suppe (1989) 
recorded, in the lower limb of the monocline near the tip 
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of the basement fault, maximum and minimum com- 
pressive stress orientations which are approximately 
horizontal and vertical, respectively. The orientations 
change by 90” in the upper limb of the monocline as do 
the orientations in the block-motion models. Narr & 
Suppe (1989) attribute the change in stress orientation at 
Casper Mountain to bending, an explanation which is 
supported by the mathematical, block-motion models. 

Brittle failure of the layer 

Initial failure of a sand or clay layer with horizontal 
convergent block motion (Malavieille 1984) and hori- 
zontal divergent block motion (Cloos 1968) produces a 
symmetric array of faults about the point of block 
interaction (Figs. la & e). The faults dip toward the 
basement-fault location and are reverse for the conver- 
gent model and normal for the divergent model, com- 
paring well with faults inferred from the stress 
distributions obtained from the block-motion models 
(Figs. lla & e). 

In experimental models of reverse (Friedman et al., 

1976a, 1980, Couples & Stearns 1978, Tsuneishi 1978), 
vertical (Sanford 1959, Lowell 1970, Horsfield 1977, 
Stearns et al., 1978, Logan et al., 1978, Tsuneishi 1978) 
and normal (Horsfield 1977, Tsuneishi 1978, Patton 
1984, Withjack et aE., 1990) basement faults, arrays of 
arcuate, concave-downward faults converge downward 
to the location of the basement fault (Figs. lb-d and 12). 
Again, the arcuate fault traces in the experimental 
models correlate well with those inferred from the 
mathematical models (Fig. 11). Arcuate faults are also 
inferred in other mathematical treatments (e.g. Sanford 
1959, Gangi et al., 1977, Couples 1977, Rodgers & Rizer 
1981). 

As discussed previously, the model results suggest 
that (Fig. 11) a layer deformed above a basement normal 
fault will tend to fail at a smaller displacement than one 
deformed by a basement reverse fault. Experimental 
support for this is provided by rock laminate models 
(Friedman et al., 1976a, Logan et al., 1978, Patton 1984) 
deformed at constant confining pressure. The models in 
Fig. 12 have been deformed just to the point where the 
induced faults have intersected (Fig. 12a) or are about to 
intersect (Figs. 12b-c) the upper surface of the upper 
rock layer. Note that when the experiments reach this 
stage of development, the basement-fault displacement 
is the least for the normal-fault model, intermediate for 
the vertical-fault model, and greatest for the reverse- 
fault model. 
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APPENDIX 

The solution for the stress and velocity distributions in a layer 
overlying a periodic sequence of faults with dip, 6, relative rate of slip, 
V, and alternating sense of slip, is obtained by summing expressions 
for two component solutions, one for purely vertical block motions, 
and one for purely horizontal motions (separation or ‘inter- 
penetration’). For the vertical block motions, the horizontal and 
vertical velocity components at the base of the layer are given by (lb) 
and (3b). The form of the vertical velocity component in (lb) can be 
approximated by the truncated series 

w(x, 0) = i V” sin (nix) 
n=l 

(Al) 

where 1= 2nlL, 

V, = V sin 6 (4/nn)I, n = 1,3,5,. 

the terms with even n vanishing, and 

Fn = sin [nnl(N + l)]l[nnl(N + l)] 

is the Gibbs’ factor (Lanczos, 1961), which improves the smoothness 
and convergence properties of the series. 

For the horizontal block motions, the velocity components at the 
base of the layer are (la) and (3a). The horizontal component will 
likewise be represented by the truncated series 

u(x, 0) = 2 VA sin (nti) (A2) 
n=l 

where 

VA = V cos 6 (4/nn)T, n = 1,3,5,. 

In either case, at the horizontal surface of the layer, z = H, the normal 
and shear tractions vanish, yielding the condition (2). 

For vertical block motion. the solution can be written in terms of a 
stress function 

N 

@(“)(x,z) = -217 1 [ll(nn)]{[An + B,(nlz - l)]e”“’ 

where 

n=l 

+ [C, + D,(nlz + l)]e-“I’} cos (nnx) 

oXX = a2@lal 

o,,= a2@la2 

a,,= -a2gaxa2 

or a stream function 

@“)(x,z) = + 2 [l/(nn)]{[A, + B,(nlz - l)]e”“’ 

n=l 

where 

- [C, + D&AZ + l)]e~““‘} cos (nix) 

U= alylaz 

w = -a*fax 

(A3) 

(A4) 

(A5) 

(A6) 

Application of the boundary conditions yields four relations determin- 
ing the arbitrary coefficients A,, B,, C,, and D, 

A,+B,=O 

A, - B, - C,, - D, = V, 

[An + B,(n,IH - l)]e”“H + [C, + D,(nlH + l)]e-““H = 0 

[A, + B,(nUL)]e”“H - [C,, + D,(nlH)]e-“‘H = 0 (A7) 

For the horizontal block motion, the stress function is 

N 

@(hj(~,z) = -2~1 7 [ll(nI)]{[A~ + BA(n1z - l)]e”“’ 

+ [CA + D~(nAz + l)]eC”“‘} cos (dx) (‘48) 
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and the stream function is 

‘Pch)(x,z) = - 2 [l/(nI)]{[A:, + B@z - l)]@ 

n=l 

- [CA + DA(nIz + l)]eP”“} sin (nk) 

The first pair of relations in (A7) are replaced by 

A:,+B:,=-I/:, 

A:, - B:, - C:, - D:, = 0 WO) 

and the second pair remain the same, except that A, is replaced by AA, 
649) and so forth. 


